Visualizing the gradient descent method
Por um escritor misterioso
Descrição
In the gradient descent method of optimization, a hypothesis function, $h_\boldsymbol{\theta}(x)$, is fitted to a data set, $(x^{(i)}, y^{(i)})$ ($i=1,2,\cdots,m$) by minimizing an associated cost function, $J(\boldsymbol{\theta})$ in terms of the parameters $\boldsymbol\theta = \theta_0, \theta_1, \cdots$. The cost function describes how closely the hypothesis fits the data for a given choice of $\boldsymbol \theta$.
Gradient Descent Visualization - Martin Kondor
Gradient Descent vs Adagrad vs Momentum in TensorFlow
How to visualize Gradient Descent using Contour plot in Python
Gradient Descent in Machine Learning, by Francesco Franco
Gradient Descent and its Types - Analytics Vidhya
Gradient descent visualization - plateau
ZO-AdaMM: Derivative-free optimization for black-box problems - MIT-IBM Watson AI Lab
Gradient Descent in Machine Learning - Javatpoint
Understanding Gradient Descent. Introduction, by Necati Demir
Orange Data Mining - Visualizing Gradient Descent
de
por adulto (o preço varia de acordo com o tamanho do grupo)